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THE CONFORMAL TRANSFORMATION OF AN AIRFOIL INTO
A STRAIGHT LINE AND ITS APPLICATICN TO THE
INVERSE PROBLEM OF AIRFOIL THEORY
By William Mutterperl

STIMMARY

A method of conformal transformation 1ls developed
that maps an alrfoll into a stralight line, the line
being chosen es the extended chord line of the alrfoll.
The mapping 1s accomplished h©y operating directly with
the alrfoll ordinates. The abser:ce of any prelininary
trensformation 1s found to shortsen the work substantlally
over that of previous nethods. Use is made of the
superposltion of solutlons to obtain a rigorous counter-
part of the approximate methods of thin-alrfoll theory.
The method is appllied to the solutlon of the direct and
inverse problems for arbitrary alrtoils and pressure
distributions. Numerlcel exoamples are given. Appli-
catlons to more general types of reglons, 1n particular
to blplanes and to cascades of alrfoils, are indicated.

INTRODUCTION

In an attempt to set up an efflclent numerical method
for finding the potential flow through an arbltrary cas-
cade of airfoils (reference 1) a method of conformeal
transformation was developed that was found to apply to
advantage in the case of lsolsted ailrfolls.

The method consists in transforming the 1solated
alrfoll dlrectly to a straight line, namely, the extended
chord line of the airfoll. The absence of the hitherto
usual preliminary transformation of the alirfoll into a
neer circle makes for a decided simplification of concept

-and procedure.
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The expositlion of the method, followed by its appli-
cation to the direct problem of the conformal mapping of
given alrfolls, 1s given in part I of thls paper. In
part IT the method 1is appllied to the lnverse problem of
airfoll theory; namely, the derlvation of an airfoll sec-
tion to satlsfy a prescribed veloclty distribution. A
conparlson with previous lnverse methods 18 made. Addl-
tilonal materlal that willl be of use 1ln the application of
the method is given in the apnendlxss. In appendix A cer-
taln numerical detalls of the calculations are dlscussed.
In apvendix B extensions of the method to the conformal
mapoing of other types of regions are indicated. The
relation of the methods used for the mapplng of alrfolls
to the Cauchy 1lntegral formula 1s dlscussed in appendix C.

Acknowledgment l1s made to Mre. I.ole Evans Doran of

the computing staff of the Langley full-scale tunnel for
her asslstance 1n making the calculations.

SYMEQLS

N
il

x + 1y plane of airfoll
=& + 1in plane of straight lines
plane of unlt clrcle

central angle of clrcle

E-Q'U e

component of Carteslan mapping function (CMF)
parallel to chord

Ay component of Carteslan mapping functlon perpen-
dlcular to chord

Ax,, AY, particular CMF's, tables T and II

T displacement constant for locating airfoll

r = 2R diameter of circle, semilength of straight line
Cp = &n + 1bp coeffilclents of serles for CMF

BN nepative of central angle of circle, corresponding
to leading edge of airfoll
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6x, b6y

5

central angle of circle minus 1800, corresponding

to tralling edge of alrfoll-
alrfoll chord
section 1lift coefficlent

velocity at surface of airfoll, fraction of free-

stream veloclty

veloclty at surface of circle, fractlon of free-

stream velocity
free-stream veloclty
element of length on alrfoll
circulation
thickness factor
camber factor
thickness ratlo
normallzling constant
denominator of equation (17)
camber, percent
incremental CHF!'s
positive area under approximate vp(m)
negative area under approximate vp(9)
angle of attack
1deal angle of attack
Py
true potential
approximate potentlal

central angle of near circle

€ =@ -6

curve

curve
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Subscripts:

N leading edge (nose)
T trailing edge

c camber

t thickness

o, 1, 2 s8successlive approximation in direct or lnverse
CHF nethods

I - THE DIRECT POTENTIAL PROBLzM OF AIRFOIL THEORY

TESZ CARTESILN MAPPING IFUNCTION

The Derivatlon of the Carteslan lappling Function

Consider the transformatlon of &an salrfoll, z-plane,
into a straight line, {-plane (fig. 1). The vector
distance between conformally corresponding points such
as P, and P on the two contours 1ls composed of a

horizontal displacement Ax &and a vertlcal displace-
ment Ay. The quantlty Ax + 1 Ay 1s only another way
of writing the analytic function z - {; that is,

z -0 =(x+1y) -~ (& + in)
=(x -~ &)+ i(y-n)
E Ax + 1 Ay (1)

By Rlemann's baslic existence theorem on conformal
mapping, the function z ~ ! connecting conformally
correspondling points 1n the z- and S-planes 1s a regular
function of either z or { everywhere outside the
airfoll or stralght line. This function willl be referred
to as a Carteslan mapplng function, or CHF. In order to
map en alrfoll onto a straight line, the airfoll ordi-
nates Ay are regarded as tne lmaginary part of an
analytic functlon on the stralght line and the problem
reduces to the calculatlon of the real part Ax.
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% - ) The. calculation of the real part of an analytic
function on a closed contour from the kmown values of
the 1maginary part 1s well known. It 1s convenient for
this calculation to conslder the stralght line as con-
formally related to a circle, p-plane, by the famlllar
tranaformation

t-r=ps B (2a)

where the constant displacement T has been 1lnserted for
Tuture convenience Iin locating the airfoil. TFor corre-
sponding points on the straight line and the circle,
equation (2a) reduces to

=T+ rr cos O

(2v)

r =90

Consldered as a function of p, thersefore, the CMF 2z - {
1s regular evermwhere outside the circle and is therefore
expressible by the inverss rowsr series:

z-t=5 210 (3)
0O p

The analogy of equation (%) with the Theodorsen-Garrick
trensaformation (reference 2)

B! = Cn
1 = —

o]
2’

which relates conformally a near circle, pt-plane, to a
clrcle, p-plane, may be noted. On the cirele proper,

where p = Reim, and defining c¢p, = ap + ib,, equa-

tion (3) reduces to two conjugate Fourier series for the
CMF; namely,

(2.4
Ax = &, +§g;

oo

b

cos n® + > —%-sin no® ()
1l R

1
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Ay=bo+Z —Ecos ne -3 21 5in no (5)
1 R 1 R%

These series evidently determine Ax from Ay or vice
versa.

An alternative method of performing this calculation
1s possible. It 1s known that 1f the real and Imaginary
parts of a functlon sre glven by conjugate Fourler series,
as in equations (l) and (5), with the constant terms
zero, two integral relations are satisfied. (See, for
example, references 2 and %; also, appendix C.) These
relations are

2
Ax(®) = - él?f Ay (@) cot S’LZ‘_E do! (6)
0
Ay(p) = 2 " Ax(91) cot &L =2 ggr (7)
am 0 2

Before the detalled application of the CHMF 2z - ¢
to the solution of the dlrect and inverse probiems of
alrfoll theory 1s made, some necesasary baslc propertles
of thls functlon wlll be discussed.

Alrfoll Position for Given CLF

It 1s noted flrst that the regions at Infinlty in
the three planes are the same except for a trivial and
arbltrary translation; that 1s, by equatlions (1), (2a),

and (3),

;.?Ei;ﬁgtxxm+ibym=co-:-:ao+ibo
(8)

lim { =p + T

_t,,P—-)"’

Secondly, 1f an airfoll is to be mapped into a
straight llne, it becomes necessary to know the polnt on
the stralght line correspondlng to the tralling edge of
the airfoll. For a glven CM®, aAx(®), Ay(?), and
straight llne of length 2r located as in filgure 1,
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the alrfoll coordinates x, y are obtelned from equa-
tions (1) and (2b) as ..

X =T+ r cos @ + Ax(Q) . (9)

vy = Ay(9) (10)

The leading and tralling edges of the alrfoil will be
taken as the polnts corresponding to the extremitles of
the airfoll absclssas. The corresponding locatlons on
the clrcle are therefore determined by maximizing x
with respect to @ in equation (9). Thus

dX -0 = - dax
'aE-—O— r sin ¢ + dm
or
daAx
gin ¢ =
r d¢ (11)

The conditlion (11) ylelds (usually by graphical deter-
minatlon) the angles corresponding to the leading and
trailing edges (fig. 1)

o = -BN

=

(12)
¢E1T+BT

=]

It will be found convenlent to so alter the position
and scale of a derlved alirfoll that, for example, 1its
chordwlse extremitlies are located at x = 1 and the
tralling edge has the ordlnate y = 0 (to be referred
to as the normal form). The chord ¢ of a derived air-
foll is by definition the difference 1n alrfoll abscissa
extremlties, or by equatlions (12) and (9),

¢ = rfcos ﬁN - cos ﬁI‘) + Ax(mH) - Ax(ml.) (13)

The increase 1ln scale from ¢ to some desired c¢o 1s
obtained simply by multiplylng r, Ax, and Ay by the
factor c¢g/c. The translation necessary to bring the
tralling edge of the airfoll to its desired location is
then accomplished by adjusting the translatlon constants T
and bg.
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Veloclty Distribution on Alrfoil

Once the CMF Ax(®), Ay(®) and the diameter of-
clrcle r of an alrfoil have been determined, the
veloclty at a point on 1ts surface 1s obtalned in a well-
known manner as the product of the known veloclty at the
corresponding polnt of the circle and the stretching
factor from the circle to the alrfoil; that 1s,

v2(9) = r $¢ v, (@) (1L)

where vp(m) is half the velocity on the circle (since
r = 2R) and ds s the element of length on the alirfoll,

The veloclty on the circle v,(®), which makes the
point © = 7 + Bn corresponding to the tralling edge
of the alrfoil a stagnation point (Kutta condition), 1s

vp(m) =|sin (¢ + a) + sin (a + Bf)‘ (15)

where a 1s the angle of attack. The velocltles Vp
and v, &are expressed nondimensionally as fractions of

free~stresam velocity. The stretching factor ds/d9 is
obtained from equations (9) and (10) as

ds _ Jfax\2 . fay\2  [faa e fasy)2
ﬁ_\/(ﬁ) +(c—1% =\/<7‘%-r sinQ) + -a%) (16)

The velocity v,(®), equation (1), therefore becomes

lsin (¢ + a) + sin (a + BT),

) 2

\/ibx_- sinc,)z +<M

r 49 r do
Thls equatlon 1s the general expression, ln terms of the
CMF, for the veloclity at the surface, equations (9) and
(10), of an arbiltrary airfoil. The denominator depends
only on the airfoil geometry, while the numerator depends
also on the angle of attack. Equation (17) is similar
to the corresponding expression in the Theodorsen-Garrick
method except for the absence of the factor representlng
8 preliminary transformation from the airfoil to a near
circle.

vy (@) = (17)
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The expressions for the 1lift coelfficlent and ideal

"“angle of attack may be noted. The circulatlon [' arpund

the airfoll 1s (V 1s free-stream velocity) _
I = L RV sin (a + BT) (18)
The 1ift coefficient e¢; 1s deflned by

1 —
5 ce; V=T
Hence
- T
cy = Lm s 8in (a + BT) (19)

where the airfoil chord ¢ 1is given by equation (13).

The 1desl angle of attack (reference 2) 1s defined
es that angle of attack for whiczh a stagnat'on polnt
exlsts at the leading edge; that 1s, vz =0 for o9 = -By
in equation (17). Hence, '

By - B
aI = _ILE_.__II‘. (20)

Superpnsitlion of Selutlens

The sum of two analytic functlons 1s an analytic
functlon; therefore, for a given p-plane circle, the sun
of two CMiF's 1s itsell a CMF as is also evident from
equations (L) to (7). Thua, the CMF's Axy + 1Ay, and

Ax5> + 1 Ay, of two component-airfolls mey, for the same
be added together to give a CMF (Ax1+Ax2) + 1(Ay1+Ay2

and thence, by equation (17), an exact veloclty distribu-
tion for a resultant airfoll. The resultant profile and
1ts veloclity alstribution is a superposlitlon 1n this
sense of the compnanent profliles and veloclty distributlons.
Thus, without sacrifice of exactness and with no great
increase of labor, airfoils may be analyzed and synthe-
slzed in terms of commonent. syymetrical thiclness dilstril-
butions and mean camber lines, Thls result provides a
rigorous counterpart of the well-known approximate super-
position methods of thin-alrfoll vortex and source-sink
potential theory.



10 NACA ARR No. LLE22a

As a partlcular case of superposition, a known CMF
Ax + 1 Ay may be multipllied by a constant S and the
resulting CMF S Ax + 1S5 Ay determines a new profile by
the new displacements S Ax, S8 Ay from polnts on the
original stralght line. It 1s evident that, except for
the corrections (S - 1) ax to the airfoll abscissas,
thls new profile is lncreased in thickness and camber
over the origlinal profile by the factor S. The effect
on the veloclity distributlon 1s that of multiplying the
derivatives 1n equetlon (17) by S. By virtue of a reduc-
tion in scale by the factor 1/3 this profile may also
be regerded as obtalned from the original one by using
the same Ax, Ay but a length of line 1/S times the
length of the original one.

The use of supernosltion as well as the application
of the CMF to some particular alrfolls wlll be llliustrated
next.

Application of the CLF to Some Particular Alrfolls

Symmetrical thlckness distributlions.- The Cartesian
mepping functlon was calculated for a symmetrical 30-
percent thickness ratio Joukowski profile from the known
conformal correspondence between & Joukowskl proflle and
a stralght line. The CMF 1is glven in normal form 1in
teble I. The associated constants T, and r, are

glven 1n table II and the prcflle 1tself, as determlned
either from. the standard formulas or from equations (9)
and (10), 1s shown in figure 2(a). The symmetry of the
profile required only the calculation of Ax(9), Ay(9)
for 0 € ¢ £ 180°. The corresponding veloclty distri-
bution (filg. 2(b)) was obtained from equatlon (1l7) by
use of the computed values of the derlivetives. At the
cusped traillng edge the veloclty as glven by equation (17)
ls Indeterminate; however, the limlting form of equa-
tion (17), deterrnined by differentiation of numerutor
and denomlnator, is

jcos (o + a)l
lim v = (21)

PP 2, . \2 25+ \2
_ d-Ax d=Ay
\/Gos P ——-zr P +< dq>2

r
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It 1s seen from this expression that the velocity at a
cusped -edge depends on the second derivatives of- the
mapplng function, that 1s, on the curvature at the cusp.

The computed second derlvatives danot/awa, daAyot/ﬁwa
of the CMF of table I are plotted in figure 3 for a range
of values of © near 180°.

The CMF's for syrmetrical proflles of different
thickness ratlos were determlned from that for the
Joukowskl proflle as Indicated previously in the sectlon
"Superposition of Solutions." The factor uy; by which
to multliply Axq,, Ay to obtaln a profile of thilckness
ratlo T 1is obtaineg from

U ATongx = m
o+ ug LAx (CDN) ; Ax (@T)]

where Ay, 1s the maximum airfoll ordinate of the known
CMF (table I) and the denominator represents the semichord
or' the derived profile. The solutlon for wuy 1s

r,T
ug = S (22)
" bYomax T T (_————
2
% Values of uy were calculated from thas formula for
» thickness ratlos of 2l percent and 12 percent and are

glven 1n table II. The resultlng CMF's were thon nor-
malized as Indicated in the section "Alrfoll Position
for Glven CMF" so that the actual factors by which to
multiply the original Axy,, Ay, were Auy. These values
are glven in table II, together wilith the assoclated
constants T and r. The proflles thus deternlned are
shown in figure 2(a) and the corresponding velocity dis-
tributions in fiyure 2(b).

Tho derived profiles are not Joukowski profiles.
The point of maxirmm thickness is shifted back along the
chord somewhat as the thickness ratio decreases. Con-
versely, the polnt of mexinmum thickness would be shifted
forward by golng from a thin Joukowskl profile to a
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thicker one. (This result was the reason for starting
from a thick section.) The CMF for the l1l2-percent thick
derived proflile 1s 1llustrated in figure L. It 1s to be
noted that the horizontal displacement functlon Ax,(®)
1s symmetrical about @ = 7, whereas the vertical dis-
placement function Ay,4(®) 1is antisymmetrical about

m = ﬁl

Mean camber lines.- The CMF was next calculated for
a clrecular-arc proflle of 6-percent camber from the known
conformal correspondence between a circular arc and a
stralght line. The normalized CMi and its derivatives
are given 1n teble III. The CM}F 1s 1llustrated 1in fig-
ure ﬁ. The symmetry in thls case is with respect to
® = 90° and @ = 270°, the Ax,,(®) being antisymmetrical

and Aygc(@) synmetrical. The circular-arc mean cariber

line is shown in figure 5(a) and the corresponding
velocity distributlion in figure 5(b).

Derlived mean camber lines were obtained from the CMF
for the circular arc in a manner simllar to that for the
symmetrical proflles. The expression determining the
factor u, for a desired percent camber C 1s

Ye Ayomax

2[.0 cos Py + ug Ax( j]

with the solution for u,

u, = EGrgicos EN (23)

Yo,y = 2C Ax((pn)

The angle @y 1n equation (2%) (as in equatlon (22))
corresponds to the extremlty of the derived mean lins.
Because the factor u, 1s to multiply the derivative
dax, (o) /do, the angle 9y as determined by the maxi-
mum condition (11) depends on u,. One or two trilals

are sufficlent to deterrilne u, simultaneously with @
from equations (23) and (1ll1) for a glven desired cember C.
Values of u, and @ (also ®@p by symmetry) are

given in table IV for derived cambers of 3 and 9 percent.
The actual multiplying factor to obtaln the derived
CMF's in normal form is given 1n table IV as Au,.
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The derived cember lines are shown 1n figure 5(a).
It 1s seen that the derlived-camber lines have been
separated into distinct upper and lower surfaces. Fur-
thermore, for the 9-percent camber line the "lower"
surface, that 1s, the surface corresponding to the lower
part of the stralght line or cirecle, lles above the
"upper" surface. Although such a camber line 1s physi-
cally meaningless by 1tself, nevertheless its CMF can- be
compounded with that for a thickness distribution to glve
a physically real result (1f the resultant profile is a
real one). The velocity distribution of the 3-percent
camber line 1s given in figure 5(b). The "veloclty dis-
tributlon" of the 9-percent camber line 1s included in
figure 5(b) for arithmetical comparison although it is
physically meaningless for the reason jJjust mentloned.

The velocltles at the cusped extremities of the
camber lines ere glven by equation (21). The second
derlvatives of the CMF of table III were computed. They

are plotted in figure % as dZAxoc/ﬁma, dszoc/&ma for

a range of © near 180°. These second derivatives, in
combinatlion with those for the symmetrical proflle, can
be used to glve & more accurate determination of the
velocity at and nesr a cusped tralling edge than 1s
obtained by using equation {17) near the tralling edge.

Combinatlon of svrmetrical proflle end mean camber
line.~ The CIF's derived for the synmetrical prollles and
Tor the mean camber lines can now be combined in varying
proportions to produce airfoils having both thickness
and camber. These airfolls may be useful In themselves
or, as in the following sectlons, may be used as initial
approximations 1n both the direct and lnverse processes.

AS an illustratlon of such comblnatlons, the CMF
of the l2-percent thlck symmetrical profile of figure 2(a)
and the CMF of the 6-percent cember cilrcular arc of
figure 5(a) were added together. The airfoil profile
thus determined 1s shown iIn figure 6(a). For comparison,
the alrfoll obtained 1n the manner of thin-airfoll theory
(see,for example, reference l;) by superposition of the
same symmetrical profile and a Z.5-percent camber clr-
cular arc (in order to dQuplicate the camber of the exact
airfoll more closely) 1s indicated in the figure. The
velocity dlstributlon of the dotted airfoll should,
according to thin-alrfoll theory, be the sum of the
symmetricael-profile veloclty and the increment above the
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free-stream value of the camber-line veloclty. This
velocity distributlion, determined from the two component
exact distributlions at zero angle of attack, 1s shown
dotted in figure 6(b). The exact velocity distribution
of the “exact" airfoil of figure 6(a) was determined
for the same 1if't coefficlent (c; = 0.88, a = 1°131)

from the known CMF. This distributlion 1s shown in
figure 6(b). The two velocity distributions differ ap-
preclably, although in the directions to be expected
from the differences in shape of the corresponding alr-
folls.

It appears that the CMF's of a relatively small
number of useful thilckness distributlons and camber lines
would sufflce to yleld a large number of useful combl-
nations of which the (perfect fluld) characteristics could
be determlned exactly.and easily in the manner lndicated.

The superpositlion of solutlons can also be used with
the airfoil mapping methods based on the conformal trans-
formatlon of a near circle to a circle. There 1s a
declded advantage, however, in working with the airfoll
ordinates directly, both 1n the facility of the calcula-
tions and 1n the 1insight that 1s maintalned of the rela-
tionshlp between an alirfoll and its veloclty distribution.

THE DIRECT POTENTIAL PROBLEM FOR AIRFOILS

The direct problem for alrfolls 1s that of finding
the potential flow past a glven arbiltrary airfoll section
sltuated In & uniform free strsam. This problem can be
solved by a CMF method of successive approximation some-
what simllar to that 1n reference 2.

Method of Solution

Suppose an airfoil to be given as in figure 6(a).
The chord 1s taken as any straight llne such that perpen=-
diculars drawn from its extremities are tangent to the
alrfoll. For exemple, the "longest-line" chord, that is,
the longest line that can be drawn within the airfoil,
satlsfies this deflinltion. The x-axls 1s taken along
this chord and the origin 1s taken at its midpoint.
Suppose, in addition, an initlal CMF Ax, &and Ayg,
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.stralght line r,,  and chordwlse translation constant T,
to be glven such that the corresponding airfoll has the
same chord end is simllar in shape to the given airfoll.
(At the worst the inlitlal alrfoll could be the gilven
chord line itself.)

At the chordwise locatlons xg5(®) of the initilal
alrfoll, corresponding to an evenly spaced set of ©O-
values by equation (9), the differences Gyl(w) between
the ordinates Ayl(w) of the given airfoll and Ayo(w)
of the 1nitilal alrfoll are measured. The ordinate dif-
ferences Gyl(w) deternilne a conjugate set of absclssa
correctlons le(w) in accordance either with equa-

tions (L) and (5) or equation (6). The detalls of this
calculatlion are glven ln appendlx A.

The 1nlitlal semlilength of stralght line r, corre-
sponding to the initlel alrfoll 1s then corrected to rqs
and the translation constant T, adjusted to T, so
that the use of r; with the first approximate CMF
Axy = bxg + Oxy, Ay} = Ayp + 6y 7ylelds a first approxi-
mate airfoll of which the chordwlse extremlties colncide
with those of the glven alrfoll. This correction 1s
described in detall presently. If the flrst approximate
airfoll 1s not satisfactorlly close to the glven alrfoil,
the procedure is repeated for a second approximate alr-
foll, and so on. The successive alrfolls thus deter-
mlned provlde a very useful criterion of convergence to
the final solution; namely, the given alrfoil. Evidently,
the fundamental relation between an alrfoil and 1lts
mappling clrcle

] Cc
Z—p=co+?l+;§-+..-

can be used 1n the manner indlicated to effect directly
the transformatlon of an airfoll 1nto a clrcle. It
appears preferable, however, to subtract Ra/b from the
second term on the right and thence to lntroduce the

straight-line variasble { = p + %r.

The exact veloclty distrlibutlon of any of the
"approximate" airfoils (hence the approximate velocity
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distribution of the given airfoll) may be obtalned from
equation (17) using the derivatives of the corresponding
CMF. The zero-1lift angle Bp to be used in equation (17)
1s determlned for each approximate airfoll along with the
corresponding correction for r.

The correction for r 1s necessary because if the
chordwise locations of the flrst approximate airfoll were -
conputed by equation (9) with the original velues of r
and T, Ax,(®) belng used instead of A4x,(®), the re-
sulting chordwise extremitles viould In general not be at
x = #l1. It 1s therefore necessary to adjust r, and T,
such that with the derived Ax;, Ay,

x1("’Nl)
X1 (“‘Tl)

where le and ¢hl are the angles on the clrcle corre-

sponding to the extremities of the desired airfoil. Thils
operation was mentioned in the section "“"Superposition of
Solutions." It may be termed a horizontal stretching of
the given airfoill. The condition given by equations.(2l)
applied to equation (9) ylelds

1

(2l)
-1

1

(25)
-1

Ty + ry cos Pp + Axl(le)

Subtraction of the second of these equations from the
first glves for ry

Ax1(¢Tl) - Axl(wnl)
"

2
I‘l = (26)
cos le -~ Cco8 le

2
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Addition of eqyap;png_(25) gives for T,

cos le + cos le . AT(SNI) + Axl(bT;)
2 2

Tl = e rl

(27)

The angles Py and  Op, in equsations (26) and (27)

correspond to the extremlties of the desired airfoll.
They are glven by graphical solutlon of equation (11)

dAx
ry aQ

Equation (11) must be solved simultaneously with equa-
tion (26) for rq, Py » and P, - In practice only a

few successive trilals are necesaary. Thence T, 1s
obtainsed by equation (27). The angle mTl determined in

thls process 1s equlvalent to the zero-l1lift angle of the
airfoil, equation (12).

Illustratlive Example of Direct Method

As a numerical 1llustrstion of the direct method the
velocity distribution of the NACA 6512 airfoil was cal-
culated. In order to obtaln an initiel alri'oil, the CMF
of the 6-percent camber circular arc (tables III and IV)
was added to the CMF of the 1l2-percent thick symmetrical
proflle, derived from that of table I as indicated in =a
previous section. Before thls addlition was made, the
CMF for the circular arc was 1lncreased in scale (multl-
plied) by 1.0928/1.0072 to correspond to the same length
of stralght 1lne r as the symmetrical profile CMF. The
normallzed resultant CMF and the assoclated constants are
given in tables V(a) and VI, respectively. The initlal
alrfoll is shown in figure 7(a).

The glven alrfoil, NaACA 6512, was so rotated through
an angle of -0.88° (nose down) as to be tangent to the
initial alrfoil at the leading edge. The convergence
near the leading edge was thereby accelerated. The glven
airfoil 1s shown in this position in flgure 7(a). Two
approximations were then carried out In accordance wlth
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the procedure given 1n the preceding section. The numeri-
cal results are glven Iin tables V and VI. The first
approximate alrfoll 1s indicated by the circles in fig-
ure 7(a); the second approximate airfoll was indistin-
guishable to the scale used (chord = 20 in.) from the
given alrfoil. The veloclity distributlons of the initiel,
first, and second approximate airfolls are given in fig-
ure T(b), together with those corresponding to one
approximation by the Theodorsen-Garrick method (refer-
ence 5). The second approximetion velocity distribution
differs appreciably from that of the Theodorsen-Garrick
method on the upper surface but agrees falrly well on the
lower surface. The dlscrepancy for the rearmost 5 percent
of chord on the lower surface appears to be due to lack

of detall in this region in the Theodorsen-Garrick cal-
culation.

The convergence of the CMF method 1s seen to be
rapld, considering the approximate nature of the initial
airfoll, although two approximations are requlred for a
satisfactory result. The second approximatlon could
probably have been made unnecessary by sultably adjusting
the first increment 8y;(®) near the leading and tralling

edges on the upper surface before calculating 6&xy(9).

The directlon 1n which to adjust the increment 1s obtalned
by comparing the thickness of the initial airfoll with
that of the given airfoll in these regions. Because a
thicker sectlion has a greater concentration of chordwlse
locatlons toward the extremltles, for a glven set of

© polnts, than does a thinner section, the chordwlse
stations would be expected to be shifted outward as the
thickness of the section 1s lncreased. The ordlnates
Ayl(w) should therefore have been chosen at chordwlse
stations slightly more toward the extremlties than those
given by equation (9).

The accuracy of the veloclties 1s estimated to be
wlthin 1 percent. It was expected, and verifled by pre-
liminary calculations, that the results would tend to
be more lnaccurate toward the extremities of the airfoll
than near the center. This result 1ls evident from equa-
tion (17). A given inaccuracy in the slopes dAx/d® and
dAy/dp can produce a large error in the veloclty near
the extremltlies, where sin ® approaches zero. This
disadvantage does not appear 1n the Theodorsen-Garrick
method, in which sin ¢ 1s replaced by one. Excesslve
error 1n these reglons can be avolded 1n varlous ways.
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If the inltial alrfoll, for which the slopes dix /d¢
and dAyo/dw have preeumably been computed accurately,
18 a good approximation in these regions, as evidenced
by the smallness of 0x;, ©6y; "compared to A4x,, Ay,,
the effect of inaccuracy of the slopes dbxl/dm, a8y, /do

wlll be reduced, since they are added to the lnitlal
slopes dAx,/d®, dAy,/de. It was to reduce the magnitude
of the incremental CMF near the leeding edge that the

NACA 6512 airfoil was drawn tangent to the initlal air-
foll in this reglon.

The error in the derivatives can also be avolded by
- computing them from the differentlated Fourler serles

for 6x,, ©Oyy. (See appendix A.) This calculation was
made in the 1llustrative example, after 1t was found that
an error of about 5 percent 1n the veloclty on the upper
surface leading edge could be caused by unavoldable
inaccuracy in measuring the lncremental slopes.

The fact that the computed derivatives do not repre-
sent the derivatives of the CMF but rather the derlva-
tive of 1ts Fourier expanslon to a finlte number of
terms may introduce inaccuracy. (The derivative Fourier
serles converges more slowly than the original series.)

A comparlison of the computed derivatives wlth the measured
slapes wlll Indlcate the limlts of error, however, as well
as the true derlvative curve.

The lmportance of knowlng the CMF derivatives ac-
curately may make it deslirable to solve the direct
problem from the alrfoll slopes, rather than from the
airfoll 1ltself, as glven data. This variatlon of
technique enables the CMF derlvatlives rather than the
CMF 1tself to be approximated initlally. Further
detalls are glven in reference 1.

I1 - THE INVERSE POTENTIAL PROBLEM OF AIRFOIL THEORY

The inverse potentlal problem of airfoll theory may
be stated as follows: Glven the veloclty distribution
as a functlon of percent chord or surface arc of an unknown
alrfoll - to derlve the alrfoll. Before the questions of
exlistence and unlqueness of a solution to the problem as
thus stated are discussed, several CMF methods of solu-
tion will be outlined and 1llustrated by numerical
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examples. Varlous previous methods of solution will then
be described briefly and their inherent limltatlions and
restrictions on the prescribed veloclty distribution will
be compared with those of the CMF methods.

The prescribed veloclty distribution 1s assumed to
be elther a double-valued continuous function of the
percent chord or a single-valued contlnuous functlon of
percent arc. (Isolated discontinuitles in veloclty are,
howsver, at least in the percent-chord case, admissible.)

CMF Method of Potentials

Thils inverse method 1s based on the fact that, 1if
the airfoll and its corresponding flat plate and cilrcle
are lmmersed in the samne free-stream flows and have the
same circulation, conformnally corresponding points 1n
the three planes have the same potential.

Conslder firat the case where a veloclty dlstribu-
tion correspondlng to a symmetrical alrfoll at zero 1lift
1s specifled as a functlon of percent chord. If an
initial alrfoll 1is assumed, the prescribed velocity can
be integrated along 1ts surfece to yleld an approximate
potential distribution as a function of percent chord.
Thls potentlal lncreases from zero at the leading edge
to a maximum value at the traliling edge. Of fundamental
Importance to the success of the method is the fact that
this potentlal curve depends mainly on the prescribed
veloclity distribution and only to a much lesser extent
on the form of the 1lnitlally assumed airfoll. The chord
line of the inlitial eirfoll teken as the x-axlis 1s next
sufficiently extended that, in the same free-stream flow
as for the airfoll, the potential, which 1n thls case
1s simply V&, lncreases llinearly from zero at its
leading edge to the same maxlmun value at the tralling
edge as exlsts for the spprozxlmate potential curve derived
Inltially. Horizontal dlsplacements &4x between these
curves are then msasursd as a functlon of thes stralght-
line absclssas and, hence, as a function of the central
angle © of the clrcle corresponding to the straight
line. These horizontal displacements &x(@), together
with the conjugate function Ay(9) computed therefrom
and the length of stralght line previously determined,
constitute a CMF for an alrfoll that is a first approxi-
mation to the unknown alrfoll. The approxlmation 1is
based on the use of a more or less arbltrary initial
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airfoll to set up the flrst approximaté potentlal. The
exact veloclty distribution of-the derived first epproxi-
mate alrfoll can now be computed and compared with the
prescribed veloclty. If the agreement 1s not satisfac~
torlly close, the procedure 1s repeated, with the alrfoll
Just derived taking the place of the one inltially assumed.

The complicatlon Introduced in the general case in
which the prescribed velocity distribution corresponds
to an unsymmetrical airfoll with circulatlon can be
resolved as follows: It is convenlent in this case to
discuss the potentlals in the circle plane. The pre-
scribed veloclity distribution 1s transferred to the circle
plane by means oi the stretching factor, presumed known,
of the initially assumed alrfoll; that 1s, equation (1)
1s solved for vn(m). The flrst approxlmate potential
distribution as a function of the central angle ® 1is
obtalned by integrating vp(®) through a ®-range of 2w

radians (around the airfoll), starting from the value
of ® near zero for which v,(®) 1is zero (the front

stagnation point). This approximate potential curve has

a riinimum value of zero at the front stagnation point,
rises to & maximum for the value of ©® near w corre-
sponding to the rear stagnation point, then falls to a
rinimum for the final valus of ©® (the front stagnation
point), which is an angle 27 radians from the starting
‘o~-point. The difference between the final and the initial
potential minimums 1s a first approximation to the circu-
lation T.

A circle of such dlameter is now derived which, with
this clirculation and the same fTree-strcam flow as for the
airfoll, ylelds a potential distribution (henceforth cslled
true potential distribution) that has the some maximum
and minimum values as the approximate potentlal curve
Just derived. If the maximum spproxlimate potentlal 1s
denoted by r,U and the decrease of potential (consldered
positive) from the maximum to the final value by r,L,
where ©r, 1s the dlameter of the circle correspondling
to the 1nitlal alrfoil, the parameter « 1s first com-
puted from

2(x + cot w) U+ L
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by means of figure 8. The desired dlameter r 1s then
given by

_ ro(U + L)
" L(cos y + ¥ sin v)

(29)

r

The parameter y 1s actually the sum of the angle of
attack and zero-llft angle of the unknown airfoll, to a
filrst approximation; that 1is,

Y=°-+BT (30)
It 1s related to the circulation I' by equation (18).

Thls procedure for the calculatlion of the diameter
(see, for example, reference 6) follows easlily from the
expression for the potential dlstribution on a circle,
obtained by integration of equation (15) as

(o) = rofo vp(CP)dQ
_BN

= r4 [cos y+ 4 8in y-cos @+a)+ (?+ a)sin ‘Y] (31)

If the dlameter r of the derlved clircle 1s nmuch
greater than the diameter r, of the circle corresponding
to the 1initial airfoll, it 1s deslrable to lncrease the
CMF Axqo, Ay, of the 1nitlal airfoll by a factor suffl-
clent to modify the initlal alrfoill such that it corre-~
sponds to a circle of dlameter r. A new approxlmate and
true potential distributlion 1ls then obtalned as described
but by using the modified initial alrfoil.

The first approximate horizontal displacement func-
tion 1s now determined as the sum of the horlzontal
displacement Ax,(®) corresponding to the (modified)
initial slrfoll and an increment ﬁxl(m) produced by
the noncoincidence of the approximate potentlial distri-
bution @, and the true potentlal distribution @&..

This horlzontal Iincrement may be measured between the

two potential curves, both consldered plotted agalnst
chordwise position in the physical plane. Wlith sufflclent
accuracy this increment may be computed as the vertical
distance between the potentlal curves divided by the
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slope of the approximgte_poteﬁtial_curye; namely, the

prescribed veloclty v,. If, therefore, all quantitles

are consldered as functlons of @

0o () = 04(P)
vy ()

(32)

Axo +

The ordinate function Ayl(w) conjugate to Axl(w)

cen now be computed and, together with Ax;(®) and the
dlameter r obtalned previously, determlnes the first

approximate airfoll by equations (9) and (10). Calcu-
lation or measurement of the CMF derivatives dAxl/d¢,

dAy,/d® and the use of equatlons (1ll) and (17) then

determine the zero 1liflt angle BT and the exact veloclty

distribution of the first approximate alrfoll. The angle
of attack, to a first approximation is given by equa-
tion (30), the value of + derived from equation (28)
being used. This exact veloclty distribution 1s compared
with that prescribed and, i1f the agreement ls not close
enough, the procedure can be repeated with the first
approximate alrfoll as the inltial airfoll.

In the case where the prescribed velocity 1s specl-
fl1ed as a functlon of percent arc, then by line 1lntegra-
tion of the prescribed veloclty along the percent arc,
the true potentlal distribution of ths unknown airfoil
is known as a function of arc (except for a trivial scale
factor). The maximum and ninirmum values of this potential
distribution then permit the unique determination, by the
calculatlion previously described, of the circle corre-
spondling conformally to the unknown alrfoil. Correlation
of the potential distrlbution of this cilrcle with the
potential distrlbution as a function of arc initially
calculated therefore ylelds exactly the potential distri-
butlon of the unknown alrfoll as a function of the central
angle @ of the circlé. This fact has been noted by
Gebelein (reference 6), The calculatlon of the dlameter »r
as outllned above for the percent-chord case 1s thus
unnecessary. The remalnder of the procedure 1s the same,
the successive approximate alrfolls now being adjusted
to correspond conformally to this clircle. before corre-
lating their percent-arc lengths with the prescribed
veloclty distribution in preparation for the next
approxi mation.




2l NACA ARR No. ILjK22a

The successive contours determlned by the method of
potentials are, of necessity, closed contours, whether or
not the sequence of contours converges to & solutlon
satisfying (mathematically) the prescribed velocity dis-
tribution. The closure of the contours 1s a consequence
of the method of setting up the horizontal displace-
rents, Ax(9), and solving for Ay(®), by which the
contour coordinates are obtalned as single-valued fuuc-
tionse of ®. The necesslty for closed contours does not,
however, exclude the posslbility of deriving physically
unreal shapes; narely, contours of filgure-eight type.
This polnt will be dlscussed at greater length later but
it may be remarked here that 1t 1s the extra degree of
freedom lntroduced by the class of flgure-eight type
contours that admlts the possibility of a unique solu-
tion to the inverse problem treatod here.

It will have been noticed that, whereas in the dlrect
method a Ay 3is determlned from the glven data - that is,
the airfoll - and a Ax 1s computed therefrom, conversely,
in the 1inverse method of potentlals a Ax 1s determlned
from the gilven data - that 13, the velocity distribution -
and a Ay 1s computed therefrom. Similarly, just as
the direct problem can alao be solved by deriving dAy/do
from the given alrfoll slopes and thence computing
dax/d¢, so, conversely, can the inverse problern be solved
by deriving dAx/d® fron the prescribed veloclty dis-
tribution and thence computing dAy/d®. This inverse
method of derlvatlves wlll be discussed after some
numorical examples are presented, 1lllustrating the rethod
of potentlals.

Examples of CMF Method of Potentlals

Symmetrical section.- The method of potentials was
appllied rirst to the derivation of the symmetrical profile
corresponding to the prescribed velocity distribution
shown in filgure 9(a). As an initial airfoil the 12-
percent thlck profile derived frcm the 30-percent thick
Joukowskl profile in part I was used. The initlal CIF
and associated constants are given in table VII. The
inltial airfoll and its velocity distribution are shown
In figure 9. The filrst increment CMF and the resultant
first approximate alirfoll and 1ts exact veloclty distri-
butlion were calculated by the procedure of the precedlng
sectlon. The incremental slopes déxl/aw, déyl/dw

were computed end found to approximate the reasured slopes
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very closely. The results are presented in table VII

and figure 9. It 1s seen that the change in veloclty
and profile accomplished by one step  of the' inverse
process 1s large; that 1s,'the convergence is rapld.

The high veloclty of the first point on the upper surface
(¢ = 15°) 1s due to lack of detall in the calculation.
(Twelve points on the upper surface were calculated.)

For practlcal purposes the nose could be easily modifled
to reduce this veloclty if desired without going through
a complete second epproximation.

Meen camber line for uniform veloclty lncrement.-
As a second example of the Inverse CMF method, the profile
producing uniform equal and opposite veloclty increments
on upper and lower surfaces was derlved. By the methods
of thin-sirfoll theory this veloclty distribution ylelds
the so-called logarlithmic camber line. The prescribed
velocity distribution 1s indicated in figure 10(a). The
veloclty peaks at the extreriitles of the prescrilbed
veloclty curve were assumed ln order to compensate for
an expected rounding off of the veloclty in thls region
in working up from the initlel velocilty distribution.
The convergence to the prescribed uniform veloclty dis-
tribution would thereby be accelerated. The 1initial
airfoll was teken as the 6-percent camber circular arc,
discussed 1n part I. The 1nitlal CMF and 1ts assoclated
constants are given in tebles III and IV. The clrcular
arc and 1ts veloclity distrlibution are shown 1in figure 10.

A first approximatlon was calculated as outlined in
the previous section. A numerical difficulty appeared
in the process of solving equation (11) for the zero-
1ift angle of the first approximate alrfoll. It appeared
that a 2lj-point calculation (12 points by symmetr did
not glve sufficient detall in the range ™ < ¢ < o

to yleld a reliable solution of equation (11l) for the
zero=-1ift angle. Thls result was a consequence of the
prescribed veloclty discontlnuity at the extremities with
the consequent large but local chenges in CMF and proflle
shape required in these reglons. The solution obtalned
for the zero-1ift angle was B, = 6.1°, which by equa-
tion (19) with r = 1.00L43 ang ay = 0 ylelded

¢y = 0.67. The desired c,;, however, 1s 0.80, which
would correspond to BT = 7.27°. It was considered

that a relatively minute change 1n the shape of the
extremltles of the derived camber line would alter the
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slope dAx;/dp in the desired range sufficiently to
yield a zero-1lift angle of Bq = 7.27°. On the other

hand the effect of such a local change on the CMF &as a
whole would be small. The veloclty distributions of the
derived proflle were therefore computed for both zero-
11ft angles quoted previously.

The results are given in table VIII and in figure 10.
Included for comparison in figure 10(b) (vertical scale
magnified) 1s the logarithmic mean line of thin-airfoil
theory, computed for c; = 0.80. The velocity distri-
bution of the derived shape as calculated for the desired
1ift coefficient of ¢, = 0.80 1s seen to be a satis-~
factory approximation %o the deslred rectangular veloclty
distribution. The profile 1tself ls seen to be one of
finlte thickress as compared wlth the single line of
thin-alrfoll theory. Alrfolls bdbtalned by superposition
of this type of camber line with thickness profiles would
therefore be lncreased in thickness over that of the
basic thickness form.

The changes in veloclty distribution and in shape
of proflle are agaln seen to be large; that 1s, the con-
vergsnce was rapld. As 1s to be expected, the rapidity
of convergence o both the dlrect and inverse methods in
comparable cases is about the same.

CMF Meithod of Derlivatives
Instead of approximating by the method of potentlals
to a CMF that, when differentlated, ylelds the prescribed
velocity, the CMF derlivatlives may be obtalned directly.

The controlling equations are equations (17), (9), and
a modification of equation (7).

V(o) = lsin (o + a) + B:n (a+ BTZ'
dA dAy
J(r—_dJ:p - 8ln CP) + (r- a0

(17)

21
%hif ax 9 -9 g0 (78)
0
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= cos @ + Z 4x(0) (9)

1= - - -—

Relt,

These equations, together with the auxiliary equations (11)
and (18), constitute a set of simultaneous equations from
which the CMF derivative dAx/d® may be determined from

a prescribed velocity distribution v,. The corresponding
eirfoil 1s determined by integration of dAx/d¢ and its
conjugate dAy/do.

Consider first the case where the veloclty 1s speci-
fled as a function of percent arc. As explalned in the
pravious section, the constants »r and 4 of the final
circle corresponding to the unknown airfoil can in this
case be determined inlitially. Polnts of equal potentlal
elong the arc and circle are then found, which yleld v,
as a functlion of @. The angle of attack a in equa-
tion (17) is taken as some reasonable value and dAx/r de
determined by successive approximation. In the filrst
approximation dAy/r d¢ may, for example, correspond to
some known CMF. Equation (17) is then solved for
dAx,/r dp, for which ths conjugate dAy/r d® 1s calcu-
lated next and used as a besis for a4 better determination
of dAx/r d®. The airfoll corresponding to any approxl-
mation 1s obtalned by integration of dax/d¢ and its
conjugate day/dp. (The method of derivatives nay be
regarded as based on ths use of the function

Qiﬂag_gl. This function 1s regular everywhere outside
the circle p = Re'®, approaches zero at infinity, and

reduces to éﬁi + 1 day on tlie circle 1tself. )

aQ do
In general the dAx/d® as determined in any approxi-

mation will have an average value other than zero. The
Ax(v) obtalned, say, by integration of its Fourler
serles would therefore contain a term proportional to @
in addition to a Fourler series. Thus, Ax(®) would
not be a single-valued functlon of ¢ and the resultlng
contour would not close. 8imply subtractling the average
value of dAx/d¢ (the conastant term in its Fourler series),
however, wilill close the derived contour. If the method
converges, this average velue approaches zero in the suc-
cesslve approxlimatlons,

ip

A preliminary over-all adjustment of an initlally
chosen CMF may be desirable. Thus, if dAxl/am is
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calculated in terms of the dAy,/d9 of & previous approxi-
mation and is found to be larger than dAx,/dp by some
factor, dAy,/d9 can be multiplied by this factor and

the calculation of dAx;/d¢ repeated.

Although the angle of attack may be arbltrarlly set
initlally in this calculation it should be so chosen that
the final airfoll will coinclde approximately in position
with the inltlal alrfoll. After each calculatlon of
dix/dp, the zero-lift angle By can be calculated,

equation (11), which thereupon flxes a, since y= a+-BT
is known.

If the prescribed veloclty distribution 1s speci-
fied as a function of percent chord, v,(¢) must be
determlned in the successlive approximations by use of
equation (9). The quantity « = a + By may be deter-
mined in sach approximation as in the method of potentisls
or, in physically real cases, by equation (19). The
diameter »r 1s so determined that the successlive alrfolls
are of a standard chord length.

It 1s evident from the structure of equation (17)
that near the airfoll extremitles where sin ¢—>»0, and
in particular at the nose of the airfoil where dAy/do
1s comparable to dAx/de® 1n magnitude, the convergence
by this method (and by the method of potentlals) will be
comparatively slow. If modifications to the airfoll only
ir. the immedlate nelghborhood of the nose are required,
1t may be more expedlent to apply e preliminary Joukowskl
transformation, that is, to use these methods wlth the
Theodorsen-Garrick transformatlon.

An example of the use of the CMF method of deriva-
tives to solve an Inverse problem is given in reference 1
for the case of & cascade of alrfolls.

Method of Betz

In the inverse method of Betz.(reference 7) an ailr-
foll and its veloclity distribution are assumed known
(fig. 11) and a deslred velocity is specified as & func-
tion of percent arc. The new veloclty and length of arc
are specified in such a way thaet the extremitles of
potential are the same as on the known airfoill.  Both
known and unknown alrfolls then transform into the same
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circle and, in particuler, the velocities at points of
_equa;_potential on the two profiles can be found.

In order to determine the profile corresponding to
the new veloclity, the complex displacement 2, - z

between polnts of equal potentlal on the two profiles is
expressed as a function of the corresponding complex
velocltles (denoted by vy ) thus,

d _azy _ dw/az _Vzy
dzl (22- zl) "dzl 'l—dw7dza-l_v22'l

Hence
Zl v
| (- ) (53)
T Z2

where the Iintegretion 1s cerried out elong the known pro-
file from the trelling edge, which is teken as colincildent
for the two eirfolls, to the point 2;. The complex
function Vz1/725 1s determined epproximetely from the

v
21
sz
potentlel by the sergument thet, 1lnasmuch as the two pro-
fliles hsve neerly the same slope at corresponding polnts,

22-21

known rstlo correspondling to the points of equal

o v, 2

the reel part of V‘l - 1 1s given by -—11 - 1. (This
z2p Vz

assumption, llke the epproximations 1n the CMF methods,

1s least velid et the nose of the alrfoll. The function

Zp = 29 18 In fact a Carteslan mapping function.) The

Imaginary part 1s then computed as the conjugate functlon,
equation (7).

In addition to the restrictions on the velocity dis-
tribution mentioned initially, further condltlions must
be met in this method, if closed contours are to be ob-
telned. Thus, the condltion for closure of contour,

j; d(z2 - zl)=£<%- )dzl =0 (34)
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and the requlired coincidence of V25 and Vaq at

infinity, lead to the following three restrictions on
the real part R(9) of the integrand in equation (3l)
consldered as a function of @ 1n the cilrcle plane,

a2 2n 2n
j; R(o)do = 0 R(®) cos wdq>=j; R(9) sin @ d9=0 (35)

Method of Weinlg and Gebeleln

The method of Weinlg and Gebelein (reference 6) may
be described essentially as follows: The glven data are
the same as in the Betz method. Consider the function

Vg Vz
2 2| _ -
tog'g, - = tog | =i =1 (s, - Pay) (36)
where Bzz and le are the slopes at corresponding

points of the two alrtolls (fig. 11). Since IVZZ‘ and
|v21| are known functions of @ with the data as given,

v
and since 1log Via 18 regular outside the circle,
21

Bz2 - le can be calculated as the functlion conjugate to

\'

z

log|=—=|. The angle B being known, B,, 1s thereby

vzl zZ7 2

determined and hence, by simple 1lntegration, the unknown
alrfoll coordinates are obtulned.

A8 1n the Betz method, the conditlon for closure of
the desired contour

| aw/ap . _ [ T4 -
Ldz —fc aw/dz dp = c ¥z dp =0 (37)

leads to the additlonsal restrictlons on the prescrlbed
veloclty distribution,
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1 21

- - 5= . "qlog!yz(m)|dm =0 ...

1 2 . k
—f log lvz(cp)l sin ¢ do = -sin 2y (38)
0

w

21
%f log 'vz(qa)| cos @ dp = -w(l - cos 2¢)
0

7/

where & 1s given by equation (30).

Discussion of the Various Inverse Methods

The niethods of Detz and of Welnig-Gebeleln may be
somewhet narrower in scomo than the CKPF :iethods. The use
of mapping functions such as in equatlons (33) and (36)
1s based on the abllity to specify dzp/dz; unamblguously

in the correspondlng regions. Thls requirement appears

to restrict the contours obtalnable by these methods to
those bounding slmply connected regions. I'urther investi-
gation of tl.is point is necessary, however. By the CKF
methods, figure-elgnt contours l.ave arisen in the course
of solution of both the direct and the inverse problems.
(Ses the Y-percent camber derived mean line (fig. 5(a))
end the illustrative examples in reference 1l.) Such con-
tours were first encountered as praoliminary results
(unnublished) in using the method of potentials with the
Theodorsen-Garrick transformation. The CHF apparently
makes no fundamental methematical distinction between simply
connected and figure-eight contours, for although z - {
must be a single-valued function of z, {, or p, the
coordinate 2z itself 1s of the same character as ! and
the latter has two Rlemann sheets at l1lts dlsposal 1in
consequence of the Joukowskl transformation from the (-

to the p-plans.

- The methods of Betz and of Vielnlg-Gebeleln require
the numerically difficult closure conditions equations (35)
and (38)) to be satisfled in advance. If the methods are
worked through for prescribed veloclty distributions
which do not satisfv theso conditions, 1t appears that

e




32 NACA ARR No. LL®22a

open contours result. In the CMF methods,.however, there
is elther no closure condition (method of potentlals) or
a numerically simple one (method of derlvatives):

an 2t
.dAJEqu: gdﬁxdcp=0
o dao 0 '

This simple closure condition in the method of deriva-
ives 1is fundamentally a consequence of the fact that
the required absence of the constant term 1n the inverse
power series for the CMF derivative mapping function

(1p giﬂaé—gl, mentioned previously) automatically ex-
cludes the inverse first power (the residue term) from

the power sories for d(z - {)/dp. Thus, physically
impossible veloclty distributions lead to open contours

in the Betz-Welnig-Gebeleln methods and to figure-elght
contours in the CMF methods (if the latter converge).

From the practical polnt of view Iin these cases, it may

be easler to obtaln the alrfoll corresponding to the

"best possible" physically attalnabls veloclty distri-
bution by the CMF methods than by the others. If the
successlion of alrfolls determined by an lnverse CMF method
1s seen to tend toward the development of a figure-eight,
the successive approximations can be stopped at the "best
possible" physically real airfoll.

As to the existence and unlqueness of a solution to
the inverse problem as stated, & rlgorous discusslon of
the solutions, for a prescribed veloclty distribution,
of the controlling equations (17), (7a), and (9) 1is
lacking. For physlcally possible veloclty distributions,
however, speclfied as a function of percent arc, the
Welnlg-Gebeleln method shows that there 1s one and only
one alrfoll as a solutlon. If, however, the veloclty is
speciflied as a functlon of percent chord, some further
condltion 1s necessary. Thls requlrement is evident from
the fact that one veloclty dlstribution for an alrfoil
can, for differently chosen chords, be expressed as a
different function of percent chord in each cass. One
chord with a glven veloclty as a function of percent
chord can therefore have rnore than one corresponding
alrfoll. There is reason to suppose that the further
condition for uniqueness of solutlon in this case 1is,
the chord being defined as in the section "The Direct
Potentlal Problem for Alrfolls," that the ordinates to
the alrfoil at the chordwise extremitles be specifiled.
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. . .From the experience wlth the CMF methods galned to
‘date, 1t I3 belleved thdt to a veloclty distribution
speclified as at the beginning of part II, and with the
further condlition mentioned in the percent-chord case,
there corresponds one and only one closed contour satis-
fying the CMPF system of equations. It is furthermore
belleved that the CMF methods are flexlble enough to
converge to thils solution in at least those cases of
eaerodynamic interest.

COWCLUSIONS

"l. The conformal transformatlon of an alirfoll to
a stralght line by the Cartesian mapping function (CMF)
method results in slmpler numerical asolutlons of the
direct and inverse potentlal problems for alrfolls than
have been hitherto avallable.

2. The use of superposition with the CMF method
for alrfolls provides a rigorous counterpart of the
approximate methods of thin-alrfoll theory.

Langley Memorial Aeronautical Laboratory
Nationel Advisory Cormlttee for Aeronuautics
Langley Fleld, Va.
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APPENDIX A

THE CALCULATION OF CONJUGATE FUNCTIONS
BY THE RUNGE SCHEDULE

The basic calculation for the type of mapping func-
tion treated in this paper and in reference 2 conslsts
of the computation of the real part of an analytic func-
tlon on a clrcle, given the imaglnary part, or vice
versa. To this end the conjugate Fourler serles, equa-
tions (lj) and (5), or the conjugate integral relatlons,
equations (6) and (7), are avallable. This type of cal-
culation appears to be fundamental in many kinds of
two~-dimensional potential problems. For example, the
solutlion of the 1integral equatlon relating normal induced
veloelty to circulatlon 1n 1lifting-line theory can be
solved easlly by a method of successive approximation
1f the transformation from the "liftlng line" to the
circle is known. Quicker methods of calculating a func-
tion from its conjugate than those glven in this appendlx
or 1n reference 2 would therefore be highly useful.

The use of the Fourler serles rather than the
Integral relations in the calculations of thls paper was
based on the followlng consideratlon. Because the func-
tion 1/z 1is regular outside the unit circle, the real
and imaginary parts of 1/z on the unit circle, namely,
cos © and =-sin @, satisfy the integral relations (6?,
(7). The substitution of -~-sin © for Ay 1in equa-
tion (6) and subsequent numerical evaluation by the 20-
point method of reference 2 gave results that were hilgher
than cos 9 by a constant error of 2.8 percent. Evalua-
tlon by a LjO-point method reduced. the~error by half, or
to 1.l percent. By the Fourier series, on the other hand,
the first harmonic (a one-point method) suffices to give
exact results 1n this case. It appears, therefore, that
when the given real functlon 1ls expressible in terms of
a small number of harmonics, as is the case 1ln alrfoll
applications, the Fourler series method 1s preferable to
the use of the integral relations.

The Runge schedule offers a convenlent means of
carrying out the basic calculation of mapplng functlons,
namely, the analysls of a perlodic functlion iInto 1lts
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Fourler series and the synthesls of a Fourler serles
into a functlon. The theory and use of the schedule 1is
described, for example, in.reference 8, whereln are also
given schedules for 12-, 24-, 36-, .and 72~point harmonic
analyses.

The necessary analyses and syntheses in the dilrect
end inverse CMF methods are carrlied out in accordance
with equations (l;) and (5) and their derivatives.

Table IX contalns the scheme of substitutlon into the
Runge schedule, table X, for the various CMF methods.

In the dlrect method, for example, the set of wvalues

8y/12 corresponding to the evenly spaced @-values is
substituted into the ¥ spaces at the beglnning of the
sum~-table. The sums anﬁ differences of these quantities
are then obtalned as directed at the left of the 1ndil-
vidual tables and substltuted into the succeeding tables.
In this way the entire sum-table 1s filled out. Before
the product-table is used, the sum-table should be checked.

The quantitles surrounded by the heavy lines in the
sum~table are ne:t multiplied by the proper factors at
the left of the product-table and the results entered
1n the appropriate spuaces as indicated by the letters
at the lelf't of the individual product-spaces. A heavy
horizontal llne at the lower loit edge of a product-
space indicetes that the corresponding product has
already been obtainsd 1n a previous space 1ln the same
row. A heavy vertical line along the left edgs of a
product-space is used to emphasize that the negatilve
value of the product of the sum-table quantity and the
product-table fuctor 1s to be entered. The sums of the
product-table columns are then entered 1ln the I, II, III,
and IV spaces. A check on the work of the product-table
up to this polnt 1s provided by the columns at the right.
The sums and differences of the I, II, III, and IV quan=
tities complete the product-table and give the Fourier
coefficlents ap, b, corresponding to O&y.

In order to perform a synthesis calculation from a
set of Fourier coefflclents an, by to the values of the
corresponding function at the even ®-polnts, the coef-
ficients ap, b, &are entered In the 4 and D spaces,
respectively, in the sum-table, and the remainder of the
sum-table and the product-table worked through as before.
The final velues in the a,, bn spaces of the product-
table are then entered in the d@ and D spaces at the
beginning of the sum-table and the sums and differences
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obtalned as 1ndicated by the synthesls column at the
left. (Note that do and d;o are to be multiplled
by 2.) The resulting y, quantlities are the desired
values of the function.

The numerical values in tables X(a) and (b) 1llus-
trate the process of obtalning 8x3(®) from ©6y;(®) in
the flrst approximation by the direct CMF method for the
NACA 6512 airfoill.
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APPENDIX B

THE MAPPING OF MORE GEN®RAL REGIONS
Simply Conmnected Regions

If the CMF method is applled to the mapplng of a
simply connected boundary with a vertical discontlinuilty,
such as a rectangle or an Infinite line with a vertical
step, the ambiguity of the ordinate Ay at the discon-
tinulity will prevent an automatic and rapid convergence
of the method. Although the difficulty could be lessened
in particular cases such as for rectangles by taking the
diagonal as x-axls, thus removing the vertical discon-
tinulty, or by using symmetry, as with squares, 1t is
evident that in general a reference shape particularly
sulted to the contour under investigation 1s needed.

The clrcle has been shown in reference 2 to be a good
reference shape for the square. It could be expected
therefore that an elllipse would be a good reference shape
for the rectangle. rurthermore, Just as the mapping
functlion based on the circle was formed of an angular
displacement and a radial displacement, the mapplng
functlon based on the ellipse should be formed cof dis-
placements along and orthogonal to the sllipse, that 1s,
should be speclfied by elliptic coordinates. The speci-
ficatlion of a figure by elllptic coordinates (¥, 8) 1in
the physical plane 2z 1s equlvalent, however, to the
transformation of the figure to a t'-plane by the two
transformations

z = p! +.§% where p!' = eW+1e

(39)

t' = log p' where t! v+ 10

and specifyling the transformed flgure by the Cartesian
coordinates of the t'-plane (¥, 6). The rectangle under
conslderation will be a near-circular shape 1n the p'-
plane and a near-stralght line shape in the t'-plane.

The mapplng of the rectangle by means of an elliptic
mapping functlion in the physlcal plane 1s therefore seen
to be accompllished by the Theodorsen-Garrick method iIn
the near-clrcle p'-plane and by the CMF method in the



38 NACA ARR No. LLK22a

near-straight line t'-plane. From this polnt of view,
therefore, the Theodorsen-Garrlick methkod conslsts of
speclfying an airfoll in the physical plane by elliptilc
coordinates, forming the corresponding elliptlc mapping
function (V¥ - V¥,) - 1¢, which conformally relates the
alrfoll to an ellipse or Joukowskl alrfoll as a baslc
shape, and expressing the ellliptic mapping functlon as a
regular function outside the circle. On the other hand,
in the t!' = log p'-plane the Theodorsen-Garrick method
conslsts of the transformation of the near-stralght

line V¥(68) +to the stralght line Wo = Constant by means
of whet is now the CMF (V¥ - V¥,) - 1¢. Thus, the
Theodorsen-Garrick method may be regarded as a form of
the CMF method, 1n which 1log p' takes the place of =
and 1log p, the plece of ¢§.

The mapping of simply comnected reglons by dif-
ference mapping functions based on the curvilinear co-
ordinates appropriate to the particular reference shape
consldered is therefore equivalent to using the CHMF dif-
ference function 2z -~ { in the plane of the near-stralght
line into which the reference shave 1s lnltlally trans-
formed.

Mapplng of the Entlre Fleld

The Fourler seriles representation of mapping func-
tions, equations (l) and (5), enables the calculation of
corresnonding points in ths two reglons to be made, once
the correspondence of the boundaries has been calculated.
By the latter calculatlion the coeffliclents ap, by and
the radius R of the circle of correspondence have been
determined. If now a larger radius R' > R be substi-
tuted for R 1in equations (l) and (5), the resulting
synthesls of the Fourler series wlll yleld the mapping
function for the circle of radius R!'; that is, will
determine polnts 1n the glven plane corresponding to the
points in the circle plane at the distance R!' from the
origin. It i1s necessary, of course, to use the mapping
function 1n conjunction with the shape in the physical
plane corresponding to the lerger clrcle. In thls way the
entire corresponding flelds can be mapped out. It may
be noted that substitution of R!' < R for R 1in equa-
tions (L) and (5) enables the mapping of those corre-
sponding polnts inslde the orlginal contours for whlch
the resulting Fourler serles converge.
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It appears to be moreo difficult to find the point
In the circle plane corresponding to a polut of the given
plane than vice versau. Thils calculation may, however,
be accomplished by a method of successive ‘approximations.
For example, 1f the glven plane is that of a near cilrcle
the polar coordinates of the given point in the near-
circle plane are assumed to be a first approximatlon to
the coordinates R' and @ of the desired point in the
circle plane. OSubstitutlon of these values into equa-
tions (ﬁ) and (5) ylelds a first approximate mapping
functlion which ceaen be used to correct the coordinates R!
and o, etc.

Rlplanes

In the case of the biplane arrangement the CMF may
be set up directly in the physical plane in the same way
as for the single alrfoll. In place of the simple trans-
formatlion from straight line to clrcle, however, the
transformatlion from the two extended chord llnes of ths
airfoils to two concentric clrcles is used. Thls trens-
formatlon 18 derived 1n reference 9. The CMF method for
biplanes bears the same relation to the nethod of ref-
erence 9 that the CMF method for monoplane airfolls bears
to the Theodorsen-Garrick method (reference 2).

For biplanes (fig. 12) the CMF z - !, being regular
In the reglon outside the two straight lines, is regular
in the ammular reglon of the p-plane and consequently l1s
expresslble as a Laurent serles in p

= h
c
z - § = Sﬁ
where _ > (Lo)
=an+1bn )

If, for the inner clrcle, thse relationship is written

z-§=Axl+iAyl
(41)

P = RleiQJ
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and for the outer cilrcls
g2 -0 =4Ax, + 1Ay,
19 : (42)

P=R26

there 1s obtained, upon substitution into equation (L0)
and reduction

~o o
a, +a_ b, - b_
Axy(op) =ag+ _g__ﬁ_n cos no + B8 sinno (43a)
Ry Ry ™
1 1
0 o
a,. + ‘T_-b -
sz(cp) =a4+ &nT8-n cos no+ -n_._b:.ﬂ sin np (43b)
2 R, R,
: 2 2
1l 1l
[+ [+
b, + b, &p -~ a_
Ayl(cp) =bg + ut ¢ Willintind : RPPOPRPY . I B =B 5in no (43c)
Ry ™ Ry ™
1 1
(o] oo
b, +Db &n - 8
A5 () = by + n n-n cos nQ - 28 315 no (434)
R2 Ry
1l l

Thoese equations are the generalization to the biplane of
equations (l}) and (5). The corresponding integral rela-
tlions nay be derlved as in reference 9. :

The solutlon of equations (4j3) in either the direct
or the inverse problem may be accompllished as before by
successive approximatlions. rfor example, In the direct
me Lhod the two alrfolls are given. If no initial approxli-
matlon biplane were avallable, the two chord lines would
be taken as the 1nltial stralght lines. By the trans-
formatlion of reference 9 this flxes the chordwise loca-
tions on the straight lines corresponding to a set of
evenly spaced © polnts on the concentric circles. The
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ordinates Ay1(®) can therefore be measured, which
.determines Ay,(9) by analysls and synthesis of equa-
tions (43c) and (l}3d), respectively. ' (THe redius ratlo
Rp /Ry 1s fixed by the lnitial transformation from the
straight lines to the concentric circles.) These Ay,(®)
values then determine a set of Ax,(®) values by the

glven shape of the second airfoll and the known chordwlse
locatlions of its flrst approximation stralight line.
Analysis of Axa(w) and subsequent synthesis of Axl(w)

by equations (43b) and (L3a), respectively, determines a
correction to R; by a horizontal stretching process

(constant Ax, Ay - adjustuent of rl) to maintaln the

given airfoll chord. The procedure is now repeated with
Ay,(®) as the initlal set of measured ordinates that

determines Ay,(®), Ax,(9), and sz(w) as before. The

radius R, cen now be similarly corrected. This step
completes the first approximation. For the second approxl-
mation & new correspondence between tle corrected straight
lines and the concentric circles 18 calculated and the
procedure repeated.

The inverse problem could also be solved by methods
gelmllar to those glven for the 1solated airfoll. Sup-
pose, for example, a wing section were glven and 1t were
deslred to derive a slat of glven chord and glven approxi-
mate location and having a prescribed veloclty distri-
bution. The method of surface potentlals, for example,
enables the calculatlon of a flrst approximate Axl(m)

(subscript 1 refers to slat). The initlal correspondence
of points betwesen the stralght lines and concentric
circles, and therefore also Rz/hl, belng determined by

the Initlally assumed straight lines, the functlion Ax,(9)

is thereupon obtained by analysis and synthesls of equa-
tions (L43a) and (43b), respectively. The horizontal dis-
placement Ax2(¢) thence determines Ayz(m) by the

known shape of the maln wing sectlon. The determination
of Ayl(m) by analysis and synthesis of equatlons (L34)
end (Jj3¢) completes the calculation of the first approxi-
mate slat section, for which the exact veloclty distri-
butlion can now also be calculated. If the maln wing
sectlon were also unknown then the wlng section above 1s
regarded as an lnitlal epproximatlon, the role of the two
alrfolls 1s reversed, and the procedure repeated to com-
plete the first approximation.
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The CMF method can be generallized 1ln the same manner
for multiply comnected regions. The transformatlion from
the n reference shapes (such as stralght lines) to n
clrcles being presumed known, the CMF can be set up as a
serles convergent in the reglon between the n circles,
and the mapping function for each boundary explicitly
expressed by allowlng the coordinate vector to assume 1lts
value on each boundary In turn. A method of successive
approximation for the solutlon of the resultling equatlons
dependlng on the particular problem under consideration
would then be establlshed.

Cascado of Alrfolls

A simplifled but practlcally Important n-body problem,
namely, the caescade of airfoils, may be mentioned finally.

The reference shape into which the cascade of alr-
folls, figure 13, 1s to be transformed ls chosen as the
cascade of stright llnes colnciding with the axtended
chord lines of the airfolls of the cescade. The trans-
formation from the cascade of straight lines to a single
circle 1s well-known, reference 10, The CMF chosen &as
indlcated in figure 15 1s therefore expresslible as an
Inverse power serles 1n the circle plane and the resulting
procedure in elther the direct or the inverse problem 1is
seen to be essontlally the same as for 1solated airfolls.
The detalled application of the CMF to cascades of alr-
folls 18 given In reference 1.
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- APPENDIX C

-

THE DETERMINATION OF MAPPING FUNCTIONS BY THE
CAUCHY INTEGRAL FORMULA

The foregoing methods of conformal transformation
have been presented from the point of view of represen-
tation of the varlous mapping functions as infinlte
Sserles. In particular, the expression of the Carteslan
mapping function as an lnverse power seriles valid every-
where outslde and on a clrecle led to the Fourler sgerles
representation for the CMF on the circle itself. The
Integral formulae representation was then obtained from
the FFourler series by the nethod of reference 5. It is
of Iinterest to see how the integral relations (6) and (7)
can be derived directly from the Cauchy lntegral formula
for a function regular outside a circle. (These integral
relations have also been derived by Betz, reference 7,
by a hydrodynanical argunient.) Since the applicability
of the Cauchy lntegral formula 18 not restricted to
circular boundarles, however, tihe results will he capable
of generalization, in principle at least, to arbitrary
simply and multiply connected reglons.

The Cauchy integral formula gives the values of an
analytic functlion f(p) withln a 3imply connected do-
maln D in terms of its valuea f(t) on the boundary
of the domaln as

1 £(t)
£(p) = 2ﬁift .- at (L4L4)

where the path of lntegration 1s counterclockwlse around
the boundary. Consider the domaln D outside the simple
closed boundary C 1n the p-plane (fig.1l). This domain
can be made slnply connected by an outer boundary B and
the cuts between the two boundarles, as lndlcated by the
dotted llnes. The Cauchy lntegral formula for the func-
tion f(p) at an interior point p of the domain D,

in terms of 1its wvalues on the boundary 1is

_ 1 [ £(t) 1 £(t)
f(p) ZTriJ;t-pdt+2TriLt-pdt (45)
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where the equal and opposlte lntegrals along the cuts .
have been omlitted. The paths of integration are indicated
by the arrows in flgure 1ll. The function f(p) 1s as-
sumed to be regular everywhere outside the boundary C

and in partlicular to epproach the limiting value f_ as
p—>®, If the boundary B 1s enlarged lndefinitely

the integrand of the second 1lntegral of equatlion (h55
epproaches f,/t and thus

1in 211f tf(t) at = £ (L6)
t—pw THJg ¥ - P

The variable p will now be made to approach a point t!
on the boundary C, and equatlon (45) will consequently
reduce to an Integral equation for the boundary values

of a functlon regular everywhere outside and on the boun-
dary. In order to evaluate properly the contributlion of
the remaining (first) integral of eguation (}45) in the
nelghtorhood of t', ths boundary C 18 modifled as
indicated in figure 1ll;. The point p 1s made the center
of a semlcircle whose ends are falred into the orliglinal
boundary. As p-—t!', the modifled boundary approaches
colncidence with the origlnal boundary. The lntegral
over the modified boundary is now evaluated as the sum

of the lntegral over the semlicircle, which 1n the 1limit

is half the residue of the interrand or %f%t'), and the

integrel over the rsst of the path, which in the limit

1s analogous to the Csuchy principal value of a real
definite integral ot which the integrand becomes infinite
at some polnt in the lntervel of lntegration. Equa-

tion (}5) therefore becomes, in the limilt,

£(t1) _ 1 £(t)
. _aﬁij;t_t'dt+fm (47)

In addition, there 13 the auxiliary condition that

1 £(t) _
'2nij; t 9t = fe (L8)

which follows from the fact that f(p) is regular every-
where outside the boundary C. Equation (47) 1s well
known 1n the theory of functlons of a complex variable.
(See reference 1ll.)
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If, now, the function f(p) 1is taken as the Cartesian
napplng function z - §{ or, on the boundary,

£(t) = Ax + 1 Ay (L9)

and 1f, further, the boundary C 1s taken as a circle
with orligin at the center,

v, +1
=g © @

(50)
t! = eW°+i¢,

substitution of equations (9) and (50) into equation (47)
and using equatlon (48) (with f_ = 0) leads to the inte-
gral relations (6) and (7). If the polar mapping func-

tion log A ¥ ~-1e=(V~-VY;) -~ 1(9p ~ 8) (reference 2)

1s substituted for f(t), the Theodorsen-Garrick integral
relations are obtalned.

The Cauchy integral formula has already been applled
(reference 12) to problems of conformal mapping in the
mennor just Indicated. Bergman has included in refer-
ence 12 (chapter XI) contributlions of two Russian authors,
Gershgorin and Krrlov. In reference 12 the mapning func-
tlon from a circle to a near clrcle was taken in the rorm
log p. The resulting integral equation does not appear
to be as convenient as those of the CMF methods. The use

'
of forms such as log %; or 2z - ! are not only accurate

numerlically since they express changes 1n the coordlnates
of the boundarles, but also they lead to palrs of integral
equatlons which contaln the solutlons of both the direct
and the lnverse potentlal problems.

From the analysls glven 1t appears possible to trans-
form conformally from one boundary to another wlthout
requiring the transformatlion from elther boundary to a
circle, since the boundary C 1n equation (L47) can be
rather arbitrary and f(t) oan be taken as a mepping
function from thls boundary to another arbltrary one.

The resulting integral equation for the mapping function
is, however, not as esasy to solve numerically as when the
boundary C 1s a clrcle.
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Once the conformal correspondence between two boun-
darles ls known, corresponding points outside the boun-
daries can be determined by the Cauchy integrel formula
(LL). It is noted that the Cauchy integral gives the
correspondence of 1lndlvidual pelrs of polnts rather than
the correspondence of entire boundarles at once, which
1s given by the Fourler serles representation. Further-
more, the possibllity exlsts of determining pairs of
corresponding polnts inside the glven boundaries by the
Cauchy integral, that is, of analytically continulng the
conformal transformation beyond the original domains.
For i1f the transformation:-from a boundary C 1n a
p-plane to a boundary C'!' 1in a p'-plane were known, the
outside regions corresponding, then the correspondence
between a boundary A 1internal to C and a boundary A!
internal to C', 1f 1t existed, could be determined by
an application of the Ceuchy lntegral formule to the
region bounded by A and C.

For example, 1f the boundaries A and C are taken
as concentric clrcles &and the mapplng function as

£(p) =1os%'-
=¥y -1le=(v-% - 1i(o - 0) (51)

in the notation of figure 15, the Cauchy integral formula
applied to the annular region 1n the p-plene (assumed
free of singularitles of the mapping function) ylelds,

in the 1limit as the varilable polnt p approaches the
inner circle A,

naw -0
t(o,*) E%Jo €;(Py) oot 21—2—3— do,

en ¢ (CD)sin(CD -01) -V (9,) sinh(?(o 7(ll

2" o cosh (Xo Xl)-oos (CPO “’1) d®, (52a)
. 1 par ? -9
§(®1") =~ é?\,!; 1 (@) cot = oo,
2§ (®,) sin L - CPl') * €,(%,) sinh (Xo Xl (521)

' 2" cosh (Xo Xl)-cos (CD q’l)
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In addition, the conditlion of regularity of the function
f(p) in the annular region ylelds the auxiliary condi-
tions

21 an
1 do = L
21T 0 €1 ¢:I- - 2" 0 eod%

1 a2 1 2w
p bae, = == f T,d0,
0 0

In the problem under consideration, the mapping function
Y (9,) - 1 (@)

(53)

for the outer boundaries is known. The radii 3(0, 3L1

of the concentric circles are givon. The second integrals
of equations (52) are thus lmown functions of @;!'. Equa-
tions (52a) and (52b) therefore comstitute a palr of
integral equations, similar to those of Theodorsen-Garrick,
for the mapping function ‘1’1(“’1) - 1e1(¢1), pertaining

to the inner boundaries.

It 18 noted that 1f the variable polnt p of the
Cauchy integral formula for the annular region 1s made
tn anproach the outer boundary C, then two additional
integral equations similar to equations (52a) and (52b)
are obtailned. These equations, together with equa-
tions (53), are a generalization to the case of ring
regions of the corresponding Theodorsen-Garrick
equatlions for simply connected reglons and can be used
for the conformal mapping of near circular ring reglons.

Mt s e e Emean ws - e R e mEe e ge———= f® e s N e e e W, e LTS e Aems ¢ we w —=n P [ —
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TABLE I
CARTESIAN MAPPING FUNJTION FOR SYMMETRICAL
30-PERCENT THICKNESS JOUKOWSKI PROFILE

(redlians) Ax, Ay, dax,/de |dayy/de
0 x {% -0.319 0 0 0.375
1 -.304 . 096l .119 355
2 -.258 .182 226 296
3 -.190 «250 .309 .206
I -.101 .287 352 .089l
5 -.0072] .295 352 -.0351
6 .0798 .270 304 -.149
7 .148 .218 .212 -.238
8 .189 .150 .0916 | -.272
9 .197 .0810 -.0261 | -.2)0
10 179 .0291 -.0958 | -.149
11 .150 00412 -.082) | -.0346
12 142 0 0 0

TABLE II
CONSTANTS USED WITH CMF OF TABLE I

xl P

Profils T hut T r ( (de 2)

ut

Joukowskl |0.30 ]1.000}0.0887{1.230 {0 | 180{1.000
Derived 24 | .805] .0716]1.185 |0 | 180] .835
Derived .12 | ho2| .0357)1.0928] 0 | 180] .453

NATIONAL ADVISCRY COMMITTEE FOR AERONAUTICS
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TABLE ITI
CMF FOR 6-PERCENT-CAMBER CIRCULAR-ARC PROFILE
ns)| 2%o Ay, dAx, /a9 | dAy,/ap
6 x {% 0 0.120 0.108 0
7 0270 | .11k - .0960 | ~.oL8L
8 .o,82 . 0953 . 0638 ~.0871
9 .0592 . 069l 0171 ~.109
10 . 0565 . 01105 -+0363 ~.106
11 0,08 .0160 -, 08l -.0781
12 L0142 .00169 -.115 -.0279
13 -.0170 .002,6 -.117 .0346
1l ~-.0l39 .019L -.0852 .0926
15 -.0587 .0 90 -.0239 .128
16 -.0552 .0328 .0506 .123
17 -.0335 .110 .113 .0756
18 0 .120 o136 0
TABLE IV
CONSTANTS USED WITH CMF OF TABLE III
Profile (pcer- ug | Aug |T r (gN Or a1 ey
cent) _ eg)| (deg) [(dsg){ "“1deal
Derived 3 lo0.502{0.501}0(1.0052|-3.37/183.37| O 0.37
Clircular
arc 6 |1.000{1.000|0{1.0072|-6.84|186.8| O .75
Derived 9 [1.502}1.499]0[1.0050{=10.26{190.26] O | -======

NATIONAL ADVISCRY COMMITTEE FOR AERONAUTICS




TABLE V
THE DIRECT CMF METHOD FOR THE NACA 6512 AIRFOIL®
HATIONAL ADVISORY
Initial Approximat:i.ox:""m""'"-rEE FOR AERONAUTICS
dAx, day, v
Ax A —_— x k o
(radg;ns) 0 Jo a0 o 1 ° (e = 1.5)
0 x f% =0,145 0,0018 =0,126 0.183 0,992 0.201 1,833
1 -.168 0565 -.0438 229 «931 564 . 1.600
2 -.166 118 .0520 2368 «823 508 1.596
3 -.142 017'7 .144 0205 .672 .605 10651
4 -.0935 .221 211 «131 «493 «685 1.656
5 -.0325 244 «248 0388 +288 "W742 1,625
6 0324 241 241 =-.0606 «0678 783 1.546
7 .0898 «213 191 =+150 -+160 «804 1.428
8 .129 «165 «107 -+.208 -s 386 «791 1.291
9 «145 «109 «0081 -.218 =599 « 727 1.156
10 134 «0561 =-,0786 =-.122 -,784 «582 1.089
11 0107 00192 -.126 -00895 -.921 .582 0958
12 «0730 0018 -.126 -,0302 =993 «118 -891
13 «0439 .0010 =-,0948 .0239 -.584 174 «853
14 0246 0094 =.0543 - «0410 -.894 452 «834
16 «0156 0207 =,0155 . 0432 =-.728 694 .814
16 0162 0297 .0182 0245 -.499 «883 :793
17 .0238 «0219 0368 -,0138 -.226 «999 773
18 0324 .0218 0252 -.0606 .0678 1.024 <759
19 « 0337 +0008 -,0199 =.0970 «354 952 »750
20 «0195 -.0263 -,0872 =.0987 «555 792 o742
21 -.0128 =-o0479 -.151 -.0566 «801 «572 711
22 -.0566 -,0528 =.185 .0186 833 332 «551
25 -.105 -00364 -0177 .106 0994 .158 0493

"CMF'.a of table V are with reference to chord rotated 0.88° counterclockwise from “longast-line"

chord.
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TABLE V

THE DIRECT CMF METHOD FOR THE NACA 6512

AIRFOILR - Continwed

NATIONAL ADVISORY

Firal approximation COMMITTEE FOR AERONAUTICS
Y . s dx dasdxy ady1 Ax dAxy dAyy K vy
—_— —_— x

(radians) n 1 a9 ao 1 av a 2 1ler = 1.5)
0 x f% 0.0018 | O -0,0057|0,0446 | 0.0151 | -0.151 | -0,0812}{ 0,198 | 0,995 | 0.192{ 1,680
1 0055 "00016 00069 00429 -00281 --161 - 00009 0201 0947 0316 10821
2 «106 -.0123 0138 .0092 | =-,0490 =e153 .0812| .187 | .844 -476] 1,692
S «153 -.0243 «0113|-.0210 | -,0383 -.130 125 | .164 | .689 «615] 1.617
4 .189 -.0319 00024 (-,0428 | -,0203 -.091 «169 | 111 | .498 .722] 1.565
5 «209 ~-. 0347 -.0103[-.0542 | O -.043 «194 | .0388] .278 L7981 1.517
6 «213 -.0276 ~.0248]-.0398 .0486 .0076 «201 | ~.0120] .0406 819] 1.475
7 «200 -.0126 -.0312 |-.0088 «0593 .0588 .182 |=-.0902]-.196 +806] l.422
8 «170 . 0030 -.0292] .0268 <0573 .100 «134 1=-.150 | =,423 7581 1.348
9 2125 <0163 -.0179) .0550 .0321 .127 2063 |-.184 }|-.627 672 1.253
10 «075 .0189 -.,0068] .0668 | =~.0l115 134 ~e0118] =133 |=,797 .524{ 1.180
1l «030 .0108 «0113} .0270 | ~.0410 «118 =~.0988{ -.131 }=~.924 2367 1.002
12 »003 .0012 «0134]-,0062 | =-,0258 +0864 | =,132 |=.0560|=,993 .129] .828
13 0 -.002 «01201 .0014 | ~.0039 .0859 | =,0934{ .0200}-.986 176} .838&
14 0087 | =-.0037 +0137] 0076 { =-.0061 #0383 | =.0487{ .0349{-.892 «.459] .819
15 .015 -.0057 +0156| .0099 | -~.0088 20312 | =,0056] .0344(-.722 .703| .804
16 +QR0 -.0097 .0199| .0145 | -.0245 .0361 2032710 ~.487 .895| .782
17 .014 -.0179 .021810 ~.0367 .0454 +0368{ -.0505|=.210 | 1.0 774
18 =+007 -.0288 .0192)-,0214 | -.0429 .0516 .00387 -.104 .0846 {1.008} .774
19 =.035 -.,0358 «0067 j-.0436 | =.0065 «0404 | -.0635{-.104 | ,361 «914] .786
20 -.069 =.0327 -.0030[-.0344 .0153 0165 | =.122 |-.0834| .606 760 779
2l =+078 -.0301 =+0117 |-, 0317 .0191 -,0245| =.183 |=-.0375} .795 .5441 758
22 -.071 -.0182 -,0189(=,0019 | -,0496 -.0755 | <.187 | .0682]1 .921 «337| 561
23 -.043 -.0066 -.0146| .0262 .0322 -.119 ~151 | .138 | .989 «175] .350

&CMF's of table V are with reference

chord.

to chord rotated 0.88° counterclockwise from ™ongest-line"

=
>
Q
>
>
2y}
o)
=
o

XA

A



TABLE V

THE DIRECT CMF METHOD FOR THE NACA 6512 AIRFOIL® - Concluded

Second approximatio

NATIONAL ADVISORY
nCOMMITTEE FOR AERONAUTICS

anye

] doxo dbys dAx2 v
Ay 6y Ox: AXx, —_— — X 2

(radians) 2 2 2 Ao T 2 o a0 Xq 2 (e = 1.5)
0 x 2 -0,0057 | =0,0076]0,0043}-0,0064 |-0,0138 | =0.146 |-0,0876{0.184 0,996 0.183 +1.,780
1 .045 -.010 00005 -00198 .0018 -.160 -00207 0205 .943 0352 ‘ 10744
2 »098 «o008 |=4,0041| -.0095 .0138 -.157 «0517| 201 +836 »488 11,656
3 149 -,004 |=-.0050( O 0111 | =-.135 «123 «175 +681 .617 1.615
4 .188 ~-.001 |=-.0039 0092 0103 -.0950 178 .121 492 714 1.584
S «210 «001 |-,0004 «0187 0 -.0432 212 0588 276 775 1,552
6 212 -.0015] .0031 +0069 -.0130 .0107 «208 }-,0250 «0426 «813 1.487
7 «195 -.0056 .0032| -,0087 -,0130 .0618 177 |=.1032 -,193 812 1.411
8 162 -,008 .0008| =.0160 =-.0057 «1006 .118 |-,1559 -.423 J773 1.320
9 .118 «,0075] =, 0037] =,0141 0069 1229 «0490{-,1769 -.629 682 1.231
10 -071 -.004 {=,0062} O .0160 «1273( -.0118|=,1174 -.802 522 1.180
11 «030 0 =-.0046 20133 0047 .1136]| -.0855]|-,1258 -.926 « 354 1.030
12 003 0 -.0020| -,0036 -.,0033 «0844| -,136 |-.,0593 -.994 134 778
13 0 o -,0015 +0031 -.0014 .0544| -.0903| .0186 -.985 «178 .840
14 «006 0 -,0006 0031 0 «0378 | =,0437| .0349 -.891 «462 .819
15 «015 0 -,0002 »0019 0 «0310| «,0037| .0344 -.721 #7705 -804
16 «020 0 «0009 «0025 «-,0027 0370 «0352 1-,0027 -.486 .898 781
17 «013 -.001 .0008| =.0008 0 <0462 «0360 }=,0505 =+209 «999 774
18 -+009 .001 0010 0067 0076 .0528 «0105 |=.0959 .0845 | 1.014 »768
19 =-,036 -,001 «0054] O -,0191 00458 | =,0635|=~.123 « 365 «915 782
20 -,064 -,005 »0015| «,0076 | © 0180 =.129 |-.0834 «605 o753 «783
21 -.078 0 +0008 s0015 | O «,0237 | =,182 }|-,0375 .792 «545 «751
22 =,073 -.002 +0085 0088 -,0107 «,0700| =,178 0575 .923 343 +540
23 -.,048 -,005 «0047| -.0024 «,0022 -.115 =¢153 «136 «989 172 379

©33AY1

aCMF's of table V are

with reference

to chord

rotated 0.88° counterclockwise from “longest-line* chord.

&

2
>
Q
>
x>
X
=y,
=
o

14%]




TABLE VI

CONSTANTS USED WITH CMF's OF TABLE V

[A11 angles are given with reference to "longest-line" chord
"ILongest-1line" chord is rotated clockwise 53!
with respect to "x-axis" chord.]

of airfoill,

Approximation r T P Py (e : 1.5)

Initial 1.1013 0,035l 6° 581 7° 251 50 33!

ist 1.1128 .033%0 70 |1 14° 501 50 191

2nd 1.1102 .0319 60 551 50 it 59 301

Theodorsen- 1,119 | -~ee--- 7° Lt 79 391 50 21t
Garrick,

1st approximation

NATIONAL ADVISQRY
COMMITTEE FOR AERONAUTICS
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TABLE VII.- INVERSE CMF METHOD FOR SYMMETRICAL PROFILE VELOCITY DISTRIBUTION

Initial CMP First increment CNF First approximation
dax, dAy, dbxl dbyl dAx1 dAyl
(rnéinns) Ax, Y, -E;— ) bxl Oyl -33— °36~ Axl Ayl -33— Ty X k v
0 x f% -0.129 |0 0 0.151 {0 0 0 -0.013) | =0.1192|0 0 0.137 | 1.000 |0.12610
1 -.122 | ,0388{ .0480] .143 .0006{-.0059 -.oogh -.0339 [ -,112% .0528 LOL26 .109 .369 .2 1;1.035
2 1 =.10 07341 0909 .119 | -.0059(-.0136|-.03 -.0165 | -,1003| . 32 .0925| .102 872 .2 11.083%
-.0763] .101 | .12l | .0830 | -.0163}-.0139/-.0389| .0119 | -.0883| .0867| .0853f .09L49! .715 | .635(1.113
ﬁ -.0405! .116 | .41 | .0%359 { -.0249{-.007,|-.0239} .0370 | -.0561| .1083{ .117 0729t .516 .gél=1.l T
5 -.0029| .119 | .142 }-.01 -.027 00391 .00L3 | .O0466 | -.0211| .1224] .1459] .0325| .288 | .833(1,160
6 0321} .109 | .122 [-.0601 | -.021 0151 .0L37| .0309 .0200 .122§ .1661 -.ozz? 0463 .8@9'1.1 8
g .0597] .0877 .oesg -.0957 | -.009%] .016L) .0362) -.0179 0597 1041 .1216(-.11 =197} .B61i1.122
07591 .0602] .0368 (-.110 | =.00 0114| .0099| -.013 .0810| .0716] .0467|-.123 | -.439 | .B31]1.0
9 «0791| .0326|-.0105 |-.0963 | -.0015] .0079| .0071| -.015 .0869| .0405]-.003,|-.112 | -.659 | .718] .9
10 .0720| .0117|~.0%85 |-,0597 | =.0011} .0046| .0006| -.0076 .0802| .0163|-.0379]|-.0673| -.BLO .532 .9
11 .0619| ,0017}-.0331|-.0139 | -.0005| .0028] .00LL | -.0091 .0707| .0045|-,0287]|-.0230| -.958 | .2 .906
12 057210 0 0 0 -.0110 0665 0 0 ©.0110}=1.000 |~e=n= .895
r, = 1.0928 r; = 1.0929
1, =:0,0357 1, = 0.0263
'NO = o @Nl = 0
#p, = 180° %, = 180°

NATIORAL ADVISORY

COMMITTEE FOR AERONAUTICS
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TABLE VIII.- INVERSE CMF METHOD FOR a = 1

CAMBER LINE VELOCITY DISTRIBUTION

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
dbxl dbyl aax day Al
® s 8y, |—= ax Ay L 1] = k (Modified
(radians) Ll 1 as a¢ 1 1 d9 do 1 (cy =v0.67) digt}ﬁib\e:tlon
uczﬁgdﬂ
6 x f% 0 0,023} |-0.0517 {0 0 0.082% |0.0556(0 0 0.940 1.171 1.19L
g -.0122 | -.0192| -.0375| .0286 .0138 .0805{ .0583}-.0197| -.245} .13 | 1.181 1.20
-.0194 | -.0101 | -.0180{ .0401] .0287| .0710| .0L57|-.QLé9 -.%7 20 1.183 1.20
9 -.0210 | .0012{ .0069{ .oL4%5! .0381 .056% .02%9 -.06L9} -.672] .68 1.185 1.21,
10 -.0161 | .0111] .0286| .0289] .0Loz| .03751-.0077}-.Q769}-.829{ .51 1.183 1.222
11 -.0075 .oiah .0332 1 .0031} .0%231| .0173 |-.0511{-.07L8]-.937] .321 1.1&3 1.210
12 -.001 01411 .0123|-.0056] .0127] .001B [-.1025(-.0%34}-.992] .103 .9 1.153
1 .001 .0122 .0206} .013L4}-.0152| .00%7 |{-.0963] .0 73 -.985] .171 .899 .7
1 L0114 | .01 0470 [-.01%20]-.0325| .0219 |~.0381| .079k| -.902} 473 .840 .g98
19 .0217 | .0076| .0256}-.0506]-.0369| .oLal|-.0017] .077h|-.7h7} . 711 .83 815
16 .ozgh -.0072 -.0181 -.0580}-.0317] .061L .0272 .065h] -. 534 .907 .838 .816
1 .0151 | -.020 -.o% g -.0382]-.01832 .ogg; .0 0374 -.2781.033 .835 .815
1 0 -.0256| -.0618 p 10 08021 .07ho}o 0 1.069 832 813
r; = 1.0043 9p = 186.10°
= = 0.6
@y = -6.10° ° 1

*oN MMV VOVN:
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TABLE IX
THE USE OF THE RUNGE SCHEDULE IN THE ANALYSIS
AND SYNTHESIS OF CONJUGATE FOURIER SERIES
Process Entry in schedule Result
Direct ﬁethod
Analysis Enter %% for y, 8n, b,
Enter in Enter in
d, spaces D, spaces
~bn an &x
Synthesis na, nb, asx/ae
nby, -nap dsy/de
Inverse method of potentilals
Analysis Enter X for v a., b
12 n n* “n
Enter in Enter 1in
d, spaces D, spaces
b, -8p 8y
Synthesis nb, -nay d6x /a9
-nay, -nbp d6y/de
Inverse method of derivatives
Analysis Enter f% %%? for yn an, bn
Enter 1n Enter in
d, spaces D,, spaces
by, -8y, day/dae
Synthesis -b,/n a,/n Ax
an/n ‘by/n Ay
COMMITTEE For AEROMAOT s
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TABLE X
THE USE OF THE RUNGE SCHEDULE iIN THE DIRECT METHOD FOR THE NACA 65I2 AIRFOIL; FIRST APPROXIMATION
(@) Analysis of 8y, » 100

Sum table for 24 ordinates

8ls nter ps *
1 Mu; 1a: Enter 3F Times 2 for synthesls _
—_—
’ 4 usv lw 0 y,—oﬂlad Ve ~0.003 | % -0.203 | 0-0.266 | 9:-0.289] % -0230] 9,-0.105| %0.0250] %0136 | ve 0.158 | v 0,09 Tines 2 for synthesis
2 5 y-v | // y10.0550| 412-0132 | 93-0251 | 320-0.273 ] 9r4-0.298] %15-0.290] 411-0.199] -400808] 3004} | yu00308| 35-0.0/67| 3¥10.010
3| A+8 4 d, 2y dy dy d d, A dy dy A
| 4-8 v 7 A 3 O o % P 0 2 Oy Dy
[Enter D in table 20
—f_’ Bater d in Ln:‘: ZnD intehle B
Syntheais
20 : Beqianing of syntnesis caleulalen gyo g 2 b Beglaning of synthesls calculstlon. pnter b
A d 0 20,0683 de=0.254] du ~0.953| 4» -0.538| 2:-0.588 4 500417 | 60,0492 50.0483 | 5 0.0067| 50.009/
[ da0,0/00] an0 0733 ds 0.127 dy 0.0883] 40.0558| 2,-0.254| 4 -0470 [ 0, 0.107 | 040.188 | 20183 | % 0.706 { 5,0.0442 4:0.0/00
A8 o P P & P & o ArB 3 73 5 5 5 ]
4- % | 5 % 5 5 5 -2 & | 4 5 & &
Enter e in table 3a Enter F in table 4b____
E{,\Ler [ in teble da - Enter E in table 3b__

Ja ta f b b F

] % 0.0/00 | ¢0.0050 era./zsw “ -0.0650) f,—o./.sgw o ///////
s -0470 | & -0.842| 0594 | & -0.365 s £-0.0351] £70.0991) &-0./35 5+ ////
a:8 o o g 2 4+8 #y ~. 4 & - /// /
A-8 h | s ) A-8 6002331 Gi-0.040; V" ///

Enlﬁ-‘ﬁ'ﬁb:hﬁl: S f:if: :hana

Sa 6b H

4 <o -0.760] 91 -0.857) 4+ %0 480] %0847 A +[#-0.700] %-0.258
s +09:-0.722 gJ-a.Se’q s N ho#67 5 Nrn-p/3%
2+8 Nip-/i82 | 4 ~/-208 a-8 | %0.0154 -8 W x 00349 NATIONAL ADVISORY

i k K COMMITTEE FOR AERONAUTICS.
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Product table for the cosine coefficients

Product table for 24 ordinates
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THE USE OF THE RUNGE SCHEDULE

TABLE X

IN THE DIRECT METHOD FOR THE NACA 65l2 AIRFOIL;
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Product table for 24 ordinates

Pyoduct table for the cosine coefficients
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NACA ARR No. L4K22a Fig. 1
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— [2oerces” 1thickness symmelrical/ profjle

= == S2-percertt fichkress  modified by inverse method.
— = — b~o&rcerrt camber circular-arc profite
—— bwE&rTernS comber modified by /nverse method

44
A~ |
Wi = B i NI T
Y s /"'\\ 7/ N
2,/, \\ \X \
0 2 4/.8 8 72T 6 A6 N\eo s ¥/a
I MNT // @, radians \ vt X 24 12
N \‘__— L. A

)
] 4y
-L\_ - ~,
/ [/‘ ,// N \\\ 4/ - N
RN 1)
v L\ 7l KN
1/ A \\ // ] AN
y 4 I \
> 1/ AN 4 )
< e RNl - e I -
2 Fa é 8 /0 /2 ™~ /6 /8 20 2z A
@, radans \ 472
N //
.y \\ /
NATIONAL ADVISORY /
COMMITTEE FOR AERONAUTICS

Figure 4. — Carfesian mapping functions.



2 NACA ARR No. L4K22a Fig. 5

—_— éfpper sur’{ace
-—LlOoWwer Surragce a ;g ‘ég r |
e, T T
——T————- s D er/reld A'zealn )/ne]
~— 6 Circufar-arc mean /iné
_—3 Derived mean /ine

2—L] .

L

—t

3

[~

= ' Q:‘- 3

=T : 1. o
X Zo 1 = 5 = } '
cmﬁ,  EEANFIBAB AR AN EE

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS.

C

@) Mean camber /ines.

RN
/ﬂL ()p,oe'r 5urfac‘e—l. L -
J _ - /L 1 = .
MZ P o \\ 1
2L \\\
yz7, O ]
\\_\ —"‘/_/?
\ \ﬂ\ ] 1] /
T T |
~ 1= r )
N Camber
3 Lower surface—Y j ‘foe o/
Q ’l \ g
<
X l o

2
- - - Denofes physically unreal solution
RN
) 7 Z 3 72 = 5 7 3 ) 70
Chord

(L) Velocity oistributions , «=o.

[Tore S.=C7red/Qr-are /720007 I2e, derived +72eor /7S,
O reLocs Sy TISFrrOCTOns Ly ArErPod oF

Cor7es orn ,272a00/9 70/Er/or.




NACA ARR No. L4KZ22a

Fig. 6
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Figure /[—The method of 597‘2.
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Figure 12— Cartesian mapping funci‘/on
for biplanes.
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NACA ARR No. L4K22a Fig. 13
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Figure [S— Carfesian /mapong
Function for cascgdes.
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Figure /4.—Application of the Cauchy
/ntegral rormula.
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Figure l0.— King domains.
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